亚洲 第一区 欧美日韩_在线观看免费黄色网站号_在线日韩人妻观看_A在线免费观看黄片

這是描述信息
兆易創(chuàng)新GD32-GigaDevice-兆易創(chuàng)新代理

兆易創(chuàng)新GD32E103CBT6-GD32 ARM Cortex-M4 Microcontroller

兆易創(chuàng)新GD32E103CBT6-GD32 ARM Cortex-M4 Microcontroller GigaDevice Semiconductor Inc. GD32E103xx ARM? Cortex?-M4 32-bit MCU Datasheet General description The GD32E103xx device belongs to the connectivity line of GD32 MCU Family. It is a 32-bit general-purpose microcontroller based on the ARM? Cortex?-M4 RISC core with best cost- performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex?-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides powerful trace technology for enhanced application security and advanced debug support. The GD32E103xx device incorporates the ARM? Cortex?-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 3 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, an USBFS and two CANs. The device operates from 1.71 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make GD32E103xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, motor drives, consumer and handheld equipment, human machine interface, security and alarm systems, POS, automotive navigation, IoT and so on. Device information Table 2-1. GD32E103xx devices features and peripheral list ? Part Number GD32E103xx ? T8 TB C8 CB R8 RB V8 VB Flash (KB) 64 128 64 128 64 128 64 128 SRAM (KB) 20 32 20 32 20 32 20 32 Timers General timer(16- bit) 4 (1-4) 4 (1-4) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) ? Advanced timer(16-bit) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) ? SysTick 1 1 1 1 1 1 1 1 ? ? Basic timer(16-bit) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) ? Watchdog 2 2 2 2 2 2 2 2 ? RTC 1 1 1 1 1 1 1 1 Connectivity ? USART 2 (0-1) 2 (0-1) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) ? ? UART 0 0 0 0 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) ? ? I2C 1 (0) 1 (0) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) ? ? SPI/I2S 1/0 (0/-) 1/0 (0/-) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) ? CAN 2xFD 2xFD 2xFD 2xFD 2xFD 2xFD 2xFD 2xFD ? USBFS 1 1 1 1 1 1 1 1 GPIO 26 26 37 37
兆易創(chuàng)新GD32-GigaDevice-兆易創(chuàng)新代理
產(chǎn)品描述

兆易創(chuàng)新GD32E103CBT6-GD32 ARM Cortex-M4 Microcontroller

GigaDevice Semiconductor Inc.
GD32E103xx
ARM® Cortex™-M4 32-bit MCU
Datasheet

General description

The GD32E103xx device belongs to the connectivity line of GD32 MCU Family. It is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M4 RISC core with best cost- performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex™-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides powerful trace technology for enhanced application security and advanced debug support.
The GD32E103xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 3 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, an USBFS and two CANs.
The device operates from 1.71 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make GD32E103xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, motor drives, consumer and handheld equipment, human machine interface, security and alarm systems, POS, automotive navigation, IoT and so on.

Device information

Table 2-1. GD32E103xx devices features and peripheral list

 

Part Number

GD32E103xx

 

T8

TB

C8

CB

R8

RB

V8

VB

Flash (KB)

64

128

64

128

64

128

64

128

SRAM (KB)

20

32

20

32

20

32

20

32

Timers

General timer(16-

bit)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

 

 

Basic timer(16-bit)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

 

Watchdog

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

Connectivity

 

USART

2

(0-1)

2

(0-1)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

UART

0

0

0

0

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

 

 

SPI/I2S

1/0

(0/-)

1/0

(0/-)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

CAN

2xFD

2xFD

2xFD

2xFD

2xFD

2xFD

2xFD

2xFD

 

USBFS

1

1

1

1

1

1

1

1

GPIO

26

26

37

37

51

51

80

80

EXMC

0

0

0

0

0

0

1

1

EXTI

16

16

16

16

16

16

16

16

ADC

Units

2

2

2

2

2

2

2

2

 

Channels

10

10

10

10

16

16

16

16

DAC

2

2

2

2

2

2

2

2

Package

QFN36

LQFP48

LQFP64

LQFP100

Memory map

Table 2-2. GD32E103xx memory map

Pre-defined

regions

 

Bus

 

Address

 

Peripherals

External device

 

 

 

AHB3

0xA000 0000 - 0xA000 0FFF

EXMC - SWREG

 

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

Reserved

 

 

0x7000 0000 - 0x8FFF FFFF

Reserved

 

 

 

0x6000 0000 - 0x63FF FFFF

EXMC -

NOR/PSRAM/SRAM

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

AHB1

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

Reserved

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

Pre-defined

regions

 

Bus

 

Address

 

 

0x4002 3800 - 0x4002 3BFF

 

 

0x4002 3400 - 0x4002 37FF

 

 

0x4002 3000 - 0x4002 33FF

 

 

0x4002 2C00 - 0x4002 2FFF

 

 

0x4002 2800 - 0x4002 2BFF

 

 

0x4002 2400 - 0x4002 27FF

 

 

0x4002 2000 - 0x4002 23FF

 

 

0x4002 1C00 - 0x4002 1FFF

 

 

0x4002 1800 - 0x4002 1BFF

 

 

0x4002 1400 - 0x4002 17FF

 

 

0x4002 1000 - 0x4002 13FF

 

 

0x4002 0C00 - 0x4002 0FFF

 

 

0x4002 0800 - 0x4002 0BFF

 

 

0x4002 0400 - 0x4002 07FF

 

 

0x4002 0000 - 0x4002 03FF

 

 

0x4001 8400 - 0x4001 FFFF

 

 

0x4001 8000 - 0x4001 83FF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

 

 

0x4001 7800 - 0x4001 7BFF

 

 

0x4001 7400 - 0x4001 77FF

 

 

0x4001 7000 - 0x4001 73FF

 

 

0x4001 6C00 - 0x4001 6FFF

 

 

0x4001 6800 - 0x4001 6BFF

 

 

0x4001 5C00 - 0x4001 67FF

 

 

0x4001 5800 - 0x4001 5BFF

 

 

0x4001 5400 - 0x4001 57FF

 

 

0x4001 5000 - 0x4001 53FF

 

 

0x4001 4C00 - 0x4001 4FFF

 

 

0x4001 4800 - 0x4001 4BFF

 

 

0x4001 4400 - 0x4001 47FF

 

 

0x4001 4000 - 0x4001 43FF

 

 

0x4001 3C00 - 0x4001 3FFF

 

 

0x4001 3800 - 0x4001 3BFF

 

 

0x4001 3400 - 0x4001 37FF

 

 

0x4001 3000 - 0x4001 33FF

 

 

0x4001 2C00 - 0x4001 2FFF

 

 

0x4001 2800 - 0x4001 2BFF

 

 

0x4001 2400 - 0x4001 27FF

 

 

0x4001 2000 - 0x4001 23FF

 

Pre-defined

regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 1C00 - 0x4001 1FFF

Reserved

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

CTC

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

0x4000 6000 - 0x4000 63FF

CAN SRAM 1K bytes

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

Pre-defined

regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

0x4000 1000 - 0x4000 13FF

TIMER5

0x4000 0C00 - 0x4000 0FFF

TIMER4

0x4000 0800 - 0x4000 0BFF

TIMER3

0x4000 0400 - 0x4000 07FF

TIMER2

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

 

 

SRAM

 

 

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

0x2006 0000 - 0x2006 FFFF

Reserved

0x2003 0000 - 0x2005 FFFF

Reserved

0x2002 0000 - 0x2002 FFFF

Reserved

0x2001 C000 - 0x2001 FFFF

 

 

SRAM

0x2001 8000 - 0x2001 BFFF

0x2000 5000 - 0x2001 7FFF

0x2000 0000 - 0x2000 4FFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

0x1FFF F800 - 0x1FFF F80F

Option Bytes

0x1FFF F000 - 0x1FFF F7FF

 

 

Boot loader

0x1FFF C010 - 0x1FFF EFFF

0x1FFF C000 - 0x1FFF C00F

0x1FFF B000 - 0x1FFF BFFF

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

0x1FFF 0000 - 0x1FFF 77FF

Reserved

0x1FFE C010 - 0x1FFE FFFF

Reserved

0x1FFE C000 - 0x1FFE C00F

Reserved

0x1001 0000 - 0x1FFE BFFF

Reserved

0x1000 0000 - 0x1000 FFFF

Reserved

0x083C 0000 - 0x0FFF FFFF

Reserved

0x0830 0000 - 0x083B FFFF

Reserved

0x0810 0000 - 0x082F FFFF

 

Main Flash

0x0802 0000 - 0x080F FFFF

0x0800 0000 - 0x0801 FFFF

0x0030 0000 - 0x07FF FFFF

Reserved

0x0010 0000 - 0x002F FFFF

 

Aliased to Main Flash or Boot loader

0x0002 0000 - 0x000F FFFF

0x0000 0000 - 0x0001 FFFF

 

GD32E103Vx LQFP100 pin definitions

Table 2-3. GD32E103Vx LQFP100 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4

Alternate: TRACED1, EXMC_A20

 

PE5

 

4

 

I/O

 

5VT

Default: PE5

Alternate: TRACED2, EXMC_A21 Remap: TIMER8_CH0

 

PE6

 

5

 

I/O

 

5VT

Default: PE6

Alternate: TRACED3, EXMC_A22 Remap: TIMER8_CH1

VBAT

6

P

-

Default: VBAT

PC13- TAMPER-

RTC

 

7

 

I/O

 

-

 

Default: PC13

Alternate: RTC_TAMPER

PC14-

OSC32IN

 

8

 

I/O

 

-

Default: PC14

Alternate: OSC32IN

PC15- OSC32OU

T

 

9

 

I/O

 

-

 

Default: PC15 Alternate: OSC32OUT

VSS_5

10

P

-

Default: VSS_5

VDD_5

11

P

-

Default: VDD_5

 

OSCIN

 

12

 

I

 

-

Default: OSCIN

Remap: PD0

 

OSCOUT

 

13

 

O

 

-

Default: OSCOUT

Remap:PD1

NRST

14

I/O

-

Default: NRST

 

PC0

 

15

 

I/O

 

-

Default: PC0

Alternate: ADC01_IN10

 

PC1

 

16

 

I/O

 

-

Default: PC1

Alternate: ADC01_IN11

 

PC2

 

17

 

I/O

 

-

Default: PC2

Alternate: ADC01_IN12

 

PC3

 

18

 

I/O

 

-

Default: PC3

Alternate: ADC01_IN13

VSSA

19

P

-

Default: VSSA

VREF-

20

P

-

Default: VREF-

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VREF+

21

P

-

Default: VREF+

VDDA

22

P

-

Default: VDDA

 

PA0-WKUP

 

23

 

I/O

 

-

Default: PA0

Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0, TIMER7_ETI

 

PA1

 

24

 

I/O

 

-

Default: PA1

Alternate: USART1_RTS, ADC01_IN1, TIMER4_CH1, TIMER1_CH1

 

PA2

 

25

 

I/O

 

-

Default: PA2

Alternate: USART1_TX, TIMER4_CH2, ADC01_IN2, TIMER8_CH0, TIMER1_CH2, SPI0_IO2

 

PA3

 

26

 

I/O

 

-

Default: PA3

Alternate: USART1_RX, TIMER4_CH3, ADC01_IN3, TIMER1_CH3, TIMER8_CH1, SPI0_IO3

VSS_4

27

P

-

Default: VSS_4

VDD_4

28

P

-

Default: VDD_4

 

 

PA4

 

 

29

 

 

I/O

 

 

-

Default: PA4

Alternate: SPI0_NSS, USART1_CK, DAC_OUT0, ADC01_IN4

Remap: SPI2_NSS, I2S2_WS

 

PA5

 

30

 

I/O

 

-

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

PA6

 

 

31

 

 

I/O

 

 

-

Default: PA6

Alternate: SPI0_MISO, TIMER7_BKIN, ADC01_IN6, TIMER2_CH0, TIMER12_CH0

Remap: TIMER0_BKIN

 

 

PA7

 

 

32

 

 

I/O

 

 

-

Default: PA7

Alternate: SPI0_MOSI, TIMER7_CH0_ON, ADC01_IN7, TIMER2_CH1, TIMER13_CH0

Remap: TIMER0_CH0_ON

 

PC4

 

33

 

I/O

 

-

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

34

 

I/O

 

-

Default: PC5

Alternate: ADC01_IN15

 

PB0

 

35

 

I/O

 

-

Default: PB0

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

Remap: TIMER0_CH1_ON

 

PB1

 

36

 

I/O

 

-

Default: PB1

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

Remap: TIMER0_CH2_ON

PB2

37

I/O

5VT

Default: PB2, BOOT1

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE7

 

38

 

I/O

 

5VT

Default: PE7 Alternate: EXMC_D4

Remap: TIMER0_ETI

 

PE8

 

39

 

I/O

 

5VT

Default: PE8 Alternate: EXMC_D5

Remap: TIMER0_CH0_ON

 

PE9

 

40

 

I/O

 

5VT

Default: PE9 Alternate: EXMC_D6

Remap: TIMER0_CH0

 

PE10

 

41

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

42

 

I/O

 

5VT

Default: PE11

Alternate: EXMC_D8 Remap: TIMER0_CH1

 

PE12

 

43

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON

 

PE13

 

44

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2

 

PE14

 

45

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3

 

PE15

 

46

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BKIN

 

PB10

 

47

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2

 

PB11

 

48

 

I/O

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3

VSS_1

49

P

-

Default: VSS_1

VDD_1

50

P

-

Default: VDD_1

 

PB12

 

51

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, USART2_CK, TIMER0_BKIN, CAN1_RX

 

PB13

 

52

 

I/O

 

5VT

Default: PB13

Alternate: SPI1_SCK, I2S1_CK, USART2_CTS, TIMER0_CH0_ON, CAN1_TX, I2C1_TXFRAME

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PB14

 

53

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0

 

PB15

 

54

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, I2S1_SD, TIMER0_CH2_ON, TIMER11_CH11

 

PD8

 

55

 

I/O

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX

 

PD9

 

56

 

I/O

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX

 

PD10

 

57

 

I/O

 

5VT

Default: PD10

Alternate: EXMC_D15 Remap: USART2_CK

 

PD11

 

58

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS

 

PD12

 

59

 

I/O

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS

 

PD13

 

60

 

I/O

 

5VT

Default: PD13 Alternate: EXMC_A18

Remap: TIMER3_CH1

 

PD14

 

61

 

I/O

 

5VT

Default: PD14 Alternate: EXMC_D0

Remap: TIMER3_CH2

 

PD15

 

62

 

I/O

 

5VT

Default: PD15 Alternate: EXMC_D1

Remap: TIMER3_CH3, CTC_SYNC

 

PC6

 

63

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0

 

PC7

 

64

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1

 

PC8

 

65

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2 Remap: TIMER2_CH2

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PC9

 

66

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3 Remap: TIMER2_CH3

 

PA8

 

67

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, USBFS_SOF, CTC_SYNC

 

PA9

 

68

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

 

PA10

 

69

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID, V1REF

 

PA11

 

70

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

 

PA12

 

71

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, CAN0_TX, USBFS_DP, TIMER0_ETI

 

PA13

 

72

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

73

-

-

-

VSS_2

74

P

-

Default: VSS_2

VDD_2

75

P

-

Default: VDD_2

 

PA14

 

76

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap:PA14

 

PA15

 

77

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

78

 

I/O

 

5VT

Default: PC10 Alternate: UART3_TX

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

79

 

I/O

 

5VT

Default: PC11 Alternate: UART3_RX

Remap: USART2_RX, SPI2_MISO

 

PC12

 

80

 

I/O

 

5VT

Default: PC12 Alternate: UART4_TX

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

81

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: OSCIN, CAN0_RX

 

PD1

 

82

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: OSCOUT, CAN0_TX

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PD2

 

83

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX

 

PD3

 

84

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS

 

PD4

 

85

 

I/O

 

5VT

Default: PD4

Alternate: EXMC_NOE Remap: USART1_RTS

 

PD5

 

86

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

 

PD6

 

87

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT Remap: USART1_RX

 

PD7

 

88

 

I/O

 

5VT

Default: PD7 Alternate: EXMC_NE0

Remap: USART1_CK

 

PB3

 

89

 

I/O

 

5VT

Default: JTDO

Alternate: SPI2_SCK, I2S2_CK

Remap: TIMER1_CH1, PB3, TRACESWO, SPI0_SCK

 

PB4

 

90

 

I/O

 

5VT

Default: NJTRST

Alternate: SPI2_MISO, I2C0_TXFRAME Remap: TIMER2_CH0, PB4, SPI0_MISO

 

PB5

 

91

 

I/O

 

-

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX

 

PB6

 

92

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2

 

PB7

 

93

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA, TIMER3_CH1, EXMC_NL(NADV) Remap: USART0_RX, SPI0_IO3

BOOT0

94

I

-

Default: BOOT0

 

PB8

 

95

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0 Remap: I2C0_SCL, CAN0_RX

 

PB9

 

96

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0 Remap: I2C0_SDA, CAN0_TX

 

PE0

 

97

 

I/O

 

5VT

Default:PE0

Alternate: TIMER3_ETI, EXMC_NBL0

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE1

 

98

 

I/O

 

5VT

Default: PE1

Alternate: EXMC_NBL1

VSS_3

99

P

-

Default: VSS_3

VDD_3

100

P

-

Default: VDD_3

Notes:
1.Type: I= input, O = output, P = power.
2.I/O Level: 5VT = 5V tolerant.
3.Functions are available in GD32E103xx devices.

GD32E103Rx LQFP64 pin definitions

Table 2-4. GD32E103Rx LQFP64 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VBAT

1

P

-

Default: VBAT

PC13- TAMPER-

RTC

 

2

 

I/O

 

-

 

Default: PC13

Alternate: RTC_TAMPER

PC14-

OSC32IN

 

3

 

I/O

 

-

Default: PC14

Alternate:OSC32IN

PC15-

OSC32OUT

 

4

 

I/O

 

-

Default: PC15

Alternate:OSC32OUT

 

PD0-OSCIN

 

5

 

I

 

-

Default: OSCIN

Remap: PD0(3)

PD1-

OSCOUT

 

6

 

O

 

-

Default: OSCOUT

Remap: PD1(3)

NRST

7

I/O

-

Default: NRST

 

PC0

 

8

 

I/O

 

-

Default: PC0

Alternate: ADC01_IN10

 

PC1

 

9

 

I/O

 

-

Default: PC1

Alternate: ADC01_IN11

 

PC2

 

10

 

I/O

 

-

Default: PC2

Alternate: ADC01_IN12

 

PC3

 

11

 

I/O

 

-

Default: PC3

Alternate: ADC01_IN13

VSSA

12

P

-

Default: VSSA

VDDA

13

P

-

Default: VDDA

 

PA0-WKUP

 

14

 

I/O

 

-

Default: PA0

Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0, TIMER7_ETI

PA1

15

I/O

-

Default: PA1

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: USART1_RTS, ADC01_IN1, TIMER4_CH1,

 

 

 

 

TIMER1_CH1

 

 

 

 

Default: PA2

PA2

16

I/O

-

Alternate: USART1_TX, TIMER4_CH2, ADC01_IN2,

 

 

 

 

TIMER8_CH0, TIMER1_CH2, SPI0_IO2

 

 

 

 

Default: PA3

PA3

17

I/O

-

Alternate: USART1_RX, TIMER4_CH3, ADC01_IN3,

 

 

 

 

TIMER1_CH3, TIMER8_CH1, SPI0_IO3

VSS_4

18

P

-

Default: VSS_4

VDD_4

19

P

-

Default: VDD_4

 

 

 

 

Default: PA4

 

PA4

 

20

 

I/O

 

-

Alternate: SPI0_NSS, USART1_CK, DAC_OUT0,

ADC01_IN4

 

 

 

 

Remap: SPI2_NSS, I2S2_WS

 

PA5

 

21

 

I/O

 

-

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

 

 

Default: PA6

 

PA6

 

22

 

I/O

 

-

Alternate: SPI0_MISO, TIMER7_BKIN, ADC01_IN6,

TIMER2_CH0, TIMER12_CH0

 

 

 

 

Remap: TIMER0_BKIN

 

 

 

 

Default: PA7

 

PA7

 

23

 

I/O

 

-

Alternate: SPI0_MOSI, TIMER7_CH0_ON, ADC01_IN7,

TIMER2_CH1, TIMER13_CH0

 

 

 

 

Remap: TIMER0_CH0_ON

 

PC4

 

24

 

I/O

 

-

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

25

 

I/O

 

-

Default: PC5

Alternate: ADC01_IN15

 

 

 

 

Default: PB0

PB0

26

I/O

-

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

 

 

 

 

Remap: TIMER0_CH1_ON

 

 

 

 

Default: PB1

PB1

27

I/O

-

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

 

 

 

 

Remap: TIMER0_CH2_ON

PB2

28

I/O

5VT

Default: PB2, BOOT1

 

 

 

 

Default: PB10

PB10

29

I/O

5VT

Alternate: I2C1_SCL, USART2_TX

 

 

 

 

Remap: TIMER1_CH2

 

 

 

 

Default: PB11

PB11

30

I/O

5VT

Alternate: I2C1_SDA, USART2_RX

 

 

 

 

Remap: TIMER1_CH3

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VSS_1

31

P

-

Default: VSS_1

VDD_1

32

P

-

Default: VDD_1

 

PB12

 

33

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, USART2_CK, TIMER0_BKIN, CAN1_RX

 

PB13

 

34

 

I/O

 

5VT

Default: PB13

Alternate: SPI1_SCK, I2S1_CK, USART2_CTS, TIMER0_CH0_ON, CAN1_TX, I2C1_TXFRAME

 

PB14

 

35

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0

 

PB15

 

36

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, I2S1_SD, TIMER0_CH2_ON, TIMER11_CH11

 

PC6

 

37

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0

 

PC7

 

38

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1

 

PC8

 

39

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2 Remap: TIMER2_CH2

 

PC9

 

40

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3 Remap: TIMER2_CH3

 

PA8

 

41

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, USBFS_SOF, CTC_SYNC

 

PA9

 

42

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

 

PA10

 

43

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID, V1REF

 

PA11

 

44

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

 

PA12

 

45

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, CAN0_TX, USBFS_DP, TIMER0_ETI

 

PA13

 

46

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VSS_2

47

P

-

Default: VSS_2

VDD_2

48

P

-

Default: VDD_2

 

PA14

 

49

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap:PA14

 

PA15

 

50

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0_ETI, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

51

 

I/O

 

5VT

Default: PC10 Alternate: UART3_TX

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

52

 

I/O

 

5VT

Default: PC11 Alternate: UART3_RX

Remap: USART2_RX, SPI2_MISO

 

PC12

 

53

 

I/O

 

5VT

Default: PC12 Alternate: UART4_TX

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD2

 

54

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX

 

PB3

 

55

 

I/O

 

5VT

Default: JTDO

Alternate: SPI2_SCK, I2S2_CK

Remap: TIMER1_CH1, PB3, TRACESWO, SPI0_SCK

 

PB4

 

56

 

I/O

 

5VT

Default: NJTRST

Alternate: SPI2_MISO, I2C0_TXFRAME Remap: TIMER2_CH0, PB4, SPI0_MISO

 

PB5

 

57

 

I/O

 

-

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX

 

PB6

 

58

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2

 

PB7

 

59

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA, TIMER3_CH1 Remap: USART0_RX, SPI0_IO3

BOOT0

60

I

-

Default: BOOT0

 

PB8

 

61

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0 Remap: I2C0_SCL, CAN0_RX

 

PB9

 

62

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0 Remap: I2C0_SDA, CAN0_TX

VSS_3

63

P

-

Default: VSS_3

Notes:
1.Type: I= input, O = output, P = power.
2.I/O Level: 5VT = 5V tolerant.
3.PD0/PD1 cannot be used for EXTI in this package.

ARM® Cortex™-M4 core

The ARM® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring floating point operations, memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M4 processor core
Up to 120 MHz operation frequency
Single-cycle multiplication and hardware divider
Floating Point Unit (FPU)
Integrated DSP instructions
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M4 processor is based on the ARMv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:
Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)


On-chip memory

Up to 128 Kbytes of Flash memory
Up to 32 KB of SRAM

The ARM® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 128 Kbytes of inner Flash at most, which includes code Flash that available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. An extra data Flash is also included for storing data mainly. Table 2-2. GD32E103xx memory map shows the memory of the GD32E103xx series of devices, including Flash, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
Internal 48 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
1.71 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the two AHB domains are 120MHz. The maximum frequency of the two APB domains including APB1 is 60 MHz and APB2 is 120 MHz. See Figure 2-6. GD32E103xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.66V/down to 1.62V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 1.71 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VDDA range: 1.71 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.71 to 3.6 V, power supply for RTC, external clock 32.768 KHz oscillator and backup registers (through power switch) when VDD is not present.

3.4.Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10).

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, IRC48M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, IRC48M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup Registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC, the FWDG reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 3 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VREF- to VREF+
Temperature sensor

Up to two 12-bit 3 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: 16 external channels, 1 channel for internal temperature sensor (VSENSE), 1 channel for internal reference voltage (VREFINT, VREFINT = 1.2V). The input voltage range is from VREF- to VREF+. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx, x=1, 2, 3) and the advanced timers (TIMER0 and TIMER7) with internal connection. The

temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

Digital to analog converter (DAC)

12-bit DAC with independent output channels
8-bit or 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC is used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 80 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 80 general purpose I/O pins (GPIO) in GD32E103xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15 and PE0 ~ PE15 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge-aligned or center-aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 ~ TIMER4 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER8 ~ TIMER13 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 &TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32E103xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:

A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides several data transfer rates: up to 100 KHz of standard mode, up to 400 KHz of the fast mode and up to 1 MHz of the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Quad-SPI configuration available in master mode (only in SPI0)
SPI TI mode and NSS pulse mode supported

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 7.5MBits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to
translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus interfaces with sampling frequency from 8 KHz to 192 KHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E103xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported.

Universal serial bus full-speed interface (USBFS)

One full-speed USB Interface with frequency up to 12 Mbit/s
Internal 48 MHz oscillator support crystal-less operation
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports

device modes. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode that allows crystal- less operation.

Controller area network (CAN)

Two CAN interface supports the CAN protocols version 2.0A, 2.0B, ISO11891-1:2015 and BOSCH CAN FD specification with communication frequency up to 1 Mbit/s of classic frames and 6 Mbit/s of FD frames
Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash
Up to 16-bit data bus
?Support to interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM®SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP100 (GD32E103Vx), LQFP64 (GD32E103Rx) and LQFP48 (GD32E103Cx) QFN36

(GD32E103Tx)
Operation temperature range: -40°C to +85°C (industrial level)

掃二維碼用手機(jī)看

飛睿無線定位測(cè)距uwb標(biāo)簽UWB芯片廠商UWB定位公司實(shí)現(xiàn)無縫定位的領(lǐng)跑者

在當(dāng)今數(shù)字化世界中,定位技術(shù)的重要性越來越被廣泛認(rèn)知和應(yīng)用。從室內(nèi)導(dǎo)航到物流跟蹤,無線測(cè)距UWB芯片的出現(xiàn)為各行各業(yè)帶來了新的可能性。而在這個(gè)充滿競(jìng)爭(zhēng)的領(lǐng)域中,一家名為飛睿UWB定位公司的無線定位測(cè)距uwb標(biāo)簽UWB芯片廠商,憑借其先進(jìn)的技術(shù)和創(chuàng)新能力,成功成為實(shí)現(xiàn)無縫定位的先進(jìn)者。 UWB(Ultra-Wideband)是一種廣泛應(yīng)用于室內(nèi)定位和跟蹤的無線通信技術(shù)。相比傳統(tǒng)的定位技術(shù),如GPS或Wi-Fi,UWB具有更高的精度和定位準(zhǔn)確性。這一技術(shù)利用短脈沖信號(hào)的傳播時(shí)間來計(jì)算物體與基站之間的距離,從而實(shí)現(xiàn)高精度的定位。 飛睿UWB定位公司作為一家專注于UWB技術(shù)研發(fā)和應(yīng)用的企業(yè),不僅在無線定位測(cè)距uwb標(biāo)簽UWB芯片領(lǐng)域擁有深厚的技術(shù)實(shí)力,而且在產(chǎn)品研發(fā)和市場(chǎng)推廣方面也積累了豐富的經(jīng)驗(yàn)。該公司的核心業(yè)務(wù)包括UWB芯片的設(shè)計(jì)、制造、銷售和技術(shù)支持,并提供完整的解決方案來滿足不同行業(yè)的需求。 一、UWB芯片的優(yōu)勢(shì)和應(yīng)用 UWB芯片作為實(shí)現(xiàn)準(zhǔn)確定位和跟蹤的關(guān)鍵技術(shù),具有許多優(yōu)勢(shì)和廣泛應(yīng)用的潛力。首先,UWB芯片具有高精度的定位能力,可以達(dá)到亞厘米級(jí)的精度,尤其適用于對(duì)位置精度要求高的應(yīng)用場(chǎng)景。其次,UWB技術(shù)在室內(nèi)環(huán)境中的表現(xiàn)出色,能夠克服傳統(tǒng)技術(shù)在室內(nèi)多路徑干擾和信號(hào)衰減方面的限制。此外,UWB芯片還能夠?qū)崿F(xiàn)低功耗和高數(shù)據(jù)傳輸速率,適用于物流追蹤、室內(nèi)導(dǎo)航、智能家居等領(lǐng)域。 二、飛睿UWB定位公司的研發(fā)實(shí)力和技術(shù)創(chuàng)新 飛睿UWB定位公司以其突出的研發(fā)實(shí)力和技術(shù)創(chuàng)新能力在行業(yè)內(nèi)獨(dú)樹一幟。該公司擁有一支由工程師和科研人員組成的專業(yè)團(tuán)隊(duì),致力于UWB芯片的研發(fā)和創(chuàng)新應(yīng)用。不僅在硬件設(shè)計(jì)方面有著豐富的經(jīng)驗(yàn),還在信號(hào)處理算法和定位算法等核心技術(shù)上有著深入研究。通過持續(xù)的技術(shù)創(chuàng)新和研發(fā)投入,UWB定位公司不斷地提升產(chǎn)品性能,滿足市場(chǎng)需求。 三、UWB定位公司的產(chǎn)品與解決方案 飛睿作為一家專業(yè)的無線定位測(cè)距uwb標(biāo)簽UWB芯片廠商,UWB定位公司提供了多款優(yōu)秀的產(chǎn)品與解決方案。首先,飛睿的UWB芯片具有高性能和可靠性,能夠滿足各行業(yè)對(duì)定位精度和穩(wěn)定性的要求。其次,UWB定位公司還提供完善的軟件開發(fā)工具和技術(shù)支持,幫助客戶快速集成和開發(fā)應(yīng)用。此外,UWB定位公司還定制化的解決方案,根據(jù)客戶的具體需求提供全面的技術(shù)支持和服務(wù),確保系統(tǒng)的穩(wěn)定運(yùn)行和良好的用戶體驗(yàn)。 四、UWB定位公司的應(yīng)用案例 UWB定位公司的產(chǎn)品和解決方案已經(jīng)成功應(yīng)用于多個(gè)行業(yè),并取得了顯著的成果。以下是一些應(yīng)用案例的介紹: 1. 物流和倉儲(chǔ)管理:UWB定位技術(shù)可以實(shí)時(shí)追蹤貨物的位置和運(yùn)動(dòng)軌跡,提高物流效率和準(zhǔn)確性。通過在倉庫內(nèi)部安裝UWB基站,可以實(shí)現(xiàn)對(duì)貨物的高精度定位,減少貨物丟失和誤配的情況,提升倉儲(chǔ)管理的效率。 2. 室內(nèi)導(dǎo)航和定位服務(wù):UWB芯片可以用于室內(nèi)導(dǎo)航和定位服務(wù),幫助人們快速找到目的地并提供導(dǎo)航指引。在商場(chǎng)、機(jī)場(chǎng)、醫(yī)院等場(chǎng)所安裝UWB基站,可以提供準(zhǔn)確的導(dǎo)航服務(wù),為用戶提供更好的體驗(yàn)。 3. 車聯(lián)網(wǎng)和自動(dòng)駕駛:UWB技術(shù)在車聯(lián)網(wǎng)和自動(dòng)駕駛領(lǐng)域也有廣泛應(yīng)用。通過在車輛中安裝UWB傳感器和芯片,可以實(shí)現(xiàn)車輛之間的精準(zhǔn)通信和定位,提升駕駛安全性和車輛自主性。 4. 工業(yè)制造和機(jī)器人:在工業(yè)制造和機(jī)器人領(lǐng)域,UWB技術(shù)可以用于定位和跟蹤移動(dòng)設(shè)備和機(jī)器人的位置,提高生產(chǎn)效率和自動(dòng)化水平。通過與其他傳感器和系統(tǒng)的結(jié)合,可以實(shí)現(xiàn)更智能化的制造和操作。 五、未來發(fā)展和挑戰(zhàn) 飛睿作為無線定位測(cè)距uwb標(biāo)簽UWB芯片廠商和定位技術(shù)提供商,UWB定位公司面臨著許多機(jī)遇和挑戰(zhàn)。隨著物聯(lián)網(wǎng)和人工智能的快速發(fā)展,對(duì)于精準(zhǔn)定位和跟蹤的需求將越來越大。UWB技術(shù)在室內(nèi)定位、智能交通、工業(yè)制造等領(lǐng)域有著廣闊的應(yīng)用前景。然而,市場(chǎng)競(jìng)爭(zhēng)激烈,技術(shù)要求不斷提高,對(duì)于UWB定位公司來說,需要不斷加強(qiáng)技術(shù)研發(fā)和創(chuàng)新能力,提供更優(yōu)秀的產(chǎn)品和解決方案,贏得客戶的信任和市場(chǎng)份額。 六、技術(shù)合作與生態(tài)建設(shè) 飛睿UWB定位公司在推動(dòng)技術(shù)合作與生態(tài)建設(shè)方面也取得了顯著成績(jī)。他們積極與其他行業(yè)的廠商和合作伙伴進(jìn)行技術(shù)交流和合作,共同推動(dòng)UWB技術(shù)的發(fā)展和應(yīng)用。通過與硬件設(shè)備生產(chǎn)商、軟件開發(fā)公司以及系統(tǒng)集成商等的合作,UWB定位公司不僅拓展了產(chǎn)品的應(yīng)用領(lǐng)域,還實(shí)現(xiàn)了技術(shù)的互補(bǔ)和資源的共享,加快了技術(shù)創(chuàng)新的速度和效果。 七、用戶體驗(yàn)與滿意度 作為先進(jìn)的UWB芯片廠商和定位技術(shù)提供商,飛睿UWB定位公司一直將用戶體驗(yàn)和滿意度放在優(yōu)先位置。他們注重產(chǎn)品的易用性和穩(wěn)定性,在產(chǎn)品設(shè)計(jì)和功能開發(fā)上持續(xù)優(yōu)化,以提供更好的用戶體驗(yàn)。同時(shí),UWB定位公司還建立了完善的售后服務(wù)體系,及時(shí)響應(yīng)客戶的需求和問題,并提供技術(shù)支持和解決方案,確保用戶能夠充分發(fā)揮UWB技術(shù)的價(jià)值和效果,獲得滿意的使用體驗(yàn)。 八、安全與隱私保護(hù) 在定位技術(shù)應(yīng)用的同時(shí),飛睿UWB定位公司也重視用戶的安全和隱私保護(hù)。他們?cè)诋a(chǎn)品設(shè)計(jì)和開發(fā)中注入了安全機(jī)制,采用加密和身份驗(yàn)證等技術(shù)手段,確保用戶的數(shù)據(jù)和隱私得到有效保護(hù)。同時(shí),UWB定位公司嚴(yán)格遵守相關(guān)法規(guī)和行業(yè)標(biāo)準(zhǔn),保證數(shù)據(jù)的合法和合規(guī)使用,為用戶提供可信賴的定位解決方案。 九、社會(huì)責(zé)任與可持續(xù)發(fā)展 作為一家具有社會(huì)責(zé)任感的企業(yè),飛睿uwb標(biāo)簽UWB定位公司積極關(guān)注可持續(xù)發(fā)展和環(huán)境保護(hù)。他們?cè)谏a(chǎn)過程中注重資源的合理利用和能源的節(jié)約,致力于減少對(duì)環(huán)境的影響。同時(shí),UWB定位公司也積極參與社會(huì)公益活動(dòng),回饋社會(huì),為推動(dòng)可持續(xù)發(fā)展和社會(huì)進(jìn)步做出貢獻(xiàn)。 總結(jié): 飛睿UWB定位公司作為一家先進(jìn)的無線定位測(cè)距uwb標(biāo)簽UWB芯片廠商和解決方案提供商,通過先進(jìn)的技術(shù)研發(fā)和創(chuàng)新能力,成功實(shí)現(xiàn)了無縫定位的先進(jìn)地位。他們的產(chǎn)品和解決方案在物流管理、室內(nèi)導(dǎo)航、車聯(lián)網(wǎng)、工業(yè)制造等領(lǐng)域展現(xiàn)出了巨大的應(yīng)用潛力和市場(chǎng)前景。同時(shí),UWB定位公司注重用戶體驗(yàn)和滿意度,積極推動(dòng)技術(shù)合作與生態(tài)建設(shè),關(guān)注安全與隱私保護(hù),承擔(dān)社會(huì)責(zé)任,致力于可持續(xù)發(fā)展。相信在不久的將來,UWB定位公司將以其先進(jìn)的技術(shù)和卓越的服務(wù),繼續(xù)引領(lǐng)無線測(cè)距UWB芯片領(lǐng)域的發(fā)展,為行業(yè)和用戶帶來更多的創(chuàng)新和價(jià)值。
點(diǎn)擊查看更多
18
2022-02

uA級(jí)別智能門鎖低功耗雷達(dá)模塊讓門鎖更加智能省電節(jié)約功耗

發(fā)布時(shí)間: : 2022-02--18
uA級(jí)別智能門鎖低功耗雷達(dá)模塊讓門鎖更加智能省電節(jié)約功耗,指紋門鎖并不是什么新鮮事,我相信每個(gè)人都很熟悉。隨著近年來智能家居的逐步普及,指紋門鎖也進(jìn)入了成千上萬的家庭。今天的功耗雷達(dá)模塊指紋門鎖不僅消除了繁瑣的鑰匙,而且還提供了各種智能功能,uA級(jí)別智能門鎖低功耗雷達(dá)模塊用在智能門鎖上,可以實(shí)現(xiàn)門鎖的智能感應(yīng)屏幕,使電池壽命延長(zhǎng)3-5倍,如與其他智能家居連接,成為智能場(chǎng)景的開關(guān)。所以今天的指紋門鎖更被稱為智能門鎖。 今天,讓我們來談?wù)劰睦走_(dá)模塊智能門鎖的安全性。希望能讓更多想知道智能門鎖的朋友認(rèn)識(shí)下。 指紋識(shí)別是智能門鎖的核心 指紋識(shí)別技術(shù)在我們的智能手機(jī)上隨處可見。從以前的實(shí)體指紋識(shí)別到屏幕下的指紋識(shí)別,可以說指紋識(shí)別技術(shù)已經(jīng)相當(dāng)成熟。指紋識(shí)別可以說是整個(gè)uA級(jí)低功耗雷達(dá)模塊智能門鎖的核心。 目前主要有三種常見的指紋識(shí)別方法,即光學(xué)指紋識(shí)別、半導(dǎo)體指紋識(shí)別和超聲指紋識(shí)別。 光學(xué)指紋識(shí)別 讓我們先談?wù)劰鈱W(xué)指紋識(shí)別的原理實(shí)際上是光的反射。我們都知道指紋本身是不均勻的。當(dāng)光照射到我們的指紋上時(shí),它會(huì)反射,光接收器可以通過接收反射的光來繪制我們的指紋。就像激光雷達(dá)測(cè)繪一樣。 光學(xué)指紋識(shí)別通常出現(xiàn)在打卡機(jī)上,手機(jī)上的屏幕指紋識(shí)別技術(shù)也使用光學(xué)指紋識(shí)別。今天的光學(xué)指紋識(shí)別已經(jīng)達(dá)到了非??斓淖R(shí)別速度。 然而,光學(xué)指紋識(shí)別有一個(gè)缺點(diǎn),即硬件上的活體識(shí)別無法實(shí)現(xiàn),容易被指模破解。通常,活體識(shí)別是通過軟件算法進(jìn)行的。如果算法處理不當(dāng),很容易翻車。 此外,光學(xué)指紋識(shí)別也容易受到液體的影響,濕手解鎖的成功率也會(huì)下降。 超聲指紋識(shí)別 超聲指紋識(shí)別也被稱為射頻指紋識(shí)別,其原理與光學(xué)類型相似,但超聲波使用聲波反射,實(shí)際上是聲納的縮小版本。因?yàn)槭褂寐暡?,不要?dān)心水折射會(huì)降低識(shí)別率,所以超聲指紋識(shí)別可以濕手解鎖。然而,超聲指紋識(shí)別在防破解方面與光學(xué)類型一樣,不能實(shí)現(xiàn)硬件,可以被指模破解,活體識(shí)別仍然依賴于算法。 半導(dǎo)體指紋識(shí)別 半導(dǎo)體指紋識(shí)別主要采用電容、電場(chǎng)(即我們所說的電感)、溫度和壓力原理來實(shí)現(xiàn)指紋圖像的收集。當(dāng)用戶將手指放在前面時(shí),皮膚形成電容陣列的極板,電容陣列的背面是絕緣極板。由于不同區(qū)域指紋的脊柱與谷物之間的距離也不同,因此每個(gè)單元的電容量隨之變化,從而獲得指紋圖像。半導(dǎo)體指紋識(shí)別具有價(jià)格低、體積小、識(shí)別率高的優(yōu)點(diǎn),因此大多數(shù)uA級(jí)低功耗雷達(dá)模塊智能門鎖都采用了這種方案。半導(dǎo)體指紋識(shí)別的另一個(gè)功能是活體識(shí)別。傳統(tǒng)的硅膠指模無法破解。 當(dāng)然,這并不意味著半導(dǎo)體可以百分識(shí)別活體。所謂的半導(dǎo)體指紋識(shí)別活體檢測(cè)不使用指紋活體體征。本質(zhì)上,它取決于皮膚的材料特性,這意味著雖然傳統(tǒng)的硅膠指模無法破解。 一般來說,無論哪種指紋識(shí)別,都有可能被破解,只是說破解的水平。然而,今天的指紋識(shí)別,無論是硬件生活識(shí)別還是算法生活識(shí)別,都相對(duì)成熟,很難破解。畢竟,都可以通過支付級(jí)別的認(rèn)證,大大保證安全。 目前,市場(chǎng)上大多數(shù)智能門鎖仍將保留鑰匙孔。除了指紋解鎖外,用戶還可以用傳統(tǒng)鑰匙開門。留下鑰匙孔的主要目的是在指紋識(shí)別故障或智能門鎖耗盡時(shí)仍有開門的方法。但由于有鑰匙孔,它表明它可以通過技術(shù)手段解鎖。 目前市場(chǎng)上的鎖等級(jí)可分為A、B、C三個(gè)等級(jí),這三個(gè)等級(jí)主要是通過防暴開鎖和防技術(shù)開鎖的程度來區(qū)分的。A級(jí)鎖要求技術(shù)解鎖時(shí)間不少于1分鐘,B級(jí)鎖要求不少于5分鐘。即使是高級(jí)別的C級(jí)鎖也只要求技術(shù)解鎖時(shí)間不少于10分鐘。 也就是說,現(xiàn)在市場(chǎng)上大多數(shù)門鎖,無論是什么級(jí)別,在專業(yè)的解鎖大師面前都糊,只不過是時(shí)間長(zhǎng)短。 安全是重要的,是否安全增加了人們對(duì)uA級(jí)別低功耗雷達(dá)模塊智能門鎖安全的擔(dān)憂。事實(shí)上,現(xiàn)在到處都是攝像頭,強(qiáng)大的人臉識(shí)別,以及移動(dòng)支付的出現(xiàn),使家庭現(xiàn)金減少,所有這些都使得入室盜竊的成本急劇上升,近年來各省市的入室盜竊幾乎呈懸崖狀下降。 換句話說,無論鎖有多安全,無論鎖有多難打開,都可能比在門口安裝攝像頭更具威懾力。 因此,擔(dān)心uA級(jí)別低功耗雷達(dá)模塊智能門鎖是否不安全可能意義不大。畢竟,家里的防盜鎖可能不安全。我們應(yīng)該更加關(guān)注門鎖能給我們帶來多少便利。 我們要考慮的是智能門鎖的兼容性和通用性。畢竟,智能門鎖近年來才流行起來。大多數(shù)人在后期將普通機(jī)械門鎖升級(jí)為智能門鎖。因此,智能門鎖能否與原門兼容是非常重要的。如果不兼容,發(fā)現(xiàn)無法安裝是一件非常麻煩的事情。 uA級(jí)別低功耗雷達(dá)模塊智能門鎖主要是為了避免帶鑰匙的麻煩。因此,智能門鎖的便利性尤為重要。便利性主要體現(xiàn)在指紋的識(shí)別率上。手指受傷導(dǎo)致指紋磨損或老年人指紋較淺。智能門鎖能否識(shí)別是非常重要的。 當(dāng)然,如果指紋真的失效,是否有其他解鎖方案,如密碼解鎖或NFC解鎖。還需要注意密碼解鎖是否有虛假密碼等防窺鏡措施。 當(dāng)然,智能門鎖的耐久性也是一個(gè)需要特別注意的地方。uA級(jí)別低功耗雷達(dá)模塊智能門鎖主要依靠?jī)?nèi)部電池供電,這就要求智能門鎖的耐久性盡可能好,否則經(jīng)常充電或更換電池會(huì)非常麻煩。 智能門鎖低功耗雷達(dá)模塊:讓門鎖更加智能省電節(jié)約功耗 在當(dāng)今信息化時(shí)代,智能門鎖已經(jīng)成為人們生活中不可或缺的一部分。對(duì)于門鎖制造商來說,如何提高門鎖的安全性、實(shí)用性和便利性,成為他們面對(duì)的重要課題。隨著人們對(duì)門鎖智能化的需求越來越高,門鎖的能耗問題也成為了門鎖制造商需要重視的問題。為此,越來越多的門鎖制造商開始推出以低功耗為主題的系列產(chǎn)品。在這樣的背景下,智能門鎖低功耗雷達(dá)模塊應(yīng)運(yùn)而生。 智能門鎖低功耗雷達(dá)模塊是一種新型技術(shù),其采取雷達(dá)技術(shù)對(duì)門鎖周圍的物體進(jìn)行探測(cè),一旦發(fā)現(xiàn)門鎖附近有人靠近,便會(huì)將門鎖自動(dòng)解鎖,無需使用鑰匙。同時(shí),在保持智能控制的前提下,實(shí)現(xiàn)了門鎖省電、節(jié)約功耗,延長(zhǎng)門鎖使用壽命。 在使用智能門鎖低功耗雷達(dá)模塊的門鎖中,控制電路和自動(dòng)解鎖機(jī)制是關(guān)鍵的部件??刂齐娐凡捎孟冗M(jìn)的芯片技術(shù),通過優(yōu)秀的功耗控制以實(shí)現(xiàn)模塊化管理。而自動(dòng)解鎖機(jī)制不僅可以通過微波信號(hào)控制實(shí)現(xiàn)門鎖的無鑰匙解鎖,還能夠在門鎖未處理的情況下自動(dòng)鎖定,保障門鎖的安全。 智能門鎖低功耗雷達(dá)模塊的主要特點(diǎn)是:低功耗、高靈敏度和高可靠性。該模塊在進(jìn)行人體檢測(cè)時(shí),可以遠(yuǎn)距離探測(cè)到距離為5-7米遠(yuǎn)處的人體信號(hào),目標(biāo)檢測(cè)速度極快,而且對(duì)門鎖周圍的環(huán)境要求不高。同時(shí),該模塊采用了自適應(yīng)自動(dòng)補(bǔ)償技術(shù),能夠根據(jù)不同環(huán)境的變化自動(dòng)調(diào)整信號(hào)發(fā)射和接收參數(shù),減小誤檢率。 在使用智能門鎖低功耗雷達(dá)模塊的門鎖中,其功耗可以做到非常低,一組電池能夠支持門鎖持續(xù)使用幾年左右。而且這樣的智能門鎖除了具有自動(dòng)解鎖的功能,還可與APP相互匹配,實(shí)現(xiàn)了遠(yuǎn)程操作的便捷性。 總的來說,智能門鎖低功耗雷達(dá)模塊的問世,解決了門鎖安全性和省電節(jié)省方面的問題,是智能門鎖材料不可或缺的一部分。作為門鎖制造商,只有不斷創(chuàng)新,利用這種新型技術(shù),將會(huì)在行業(yè)中占據(jù)重要的地位。 除了上文所述的主要特點(diǎn)和優(yōu)勢(shì),智能門鎖低功耗雷達(dá)模塊還具有以下幾點(diǎn): 1. 實(shí)時(shí)監(jiān)測(cè)門鎖周圍環(huán)境變化,通過物體的距離體積和運(yùn)動(dòng)來確定是否有人靠近門鎖,并控制門鎖的開啟或關(guān)閉,使得門鎖更加智能化。 2. 可對(duì)門鎖附件進(jìn)行檢測(cè),如門掛、門應(yīng)急照明燈以及緊急呼叫按鈕等,并及時(shí)給出響應(yīng),確保門鎖能夠正常運(yùn)作。這樣,門鎖在不受干擾的情況下,能夠 保持安全通道。 3. 通過智能學(xué)習(xí)技術(shù),能夠自適應(yīng)網(wǎng)站多種環(huán)境的變化,讓智能門鎖低功耗雷達(dá)模塊更加準(zhǔn)確和精細(xì)的控制門鎖的開關(guān),節(jié)約能耗并延長(zhǎng)使用壽命。 4. 能夠與其他智能電器相連,如智能家居系統(tǒng)、電視等,形成智能家居生態(tài)圈,更好地控制家庭訪客進(jìn)出,讓生活更加方便。 綜上所述,智能門鎖低功耗雷達(dá)模塊的出現(xiàn),對(duì)提升門鎖能耗管理和智能化有著重要作用。門鎖制造商只有將這些新型技術(shù)運(yùn)用到門鎖產(chǎn)品中,才能更加貼合用戶需求,滿足消費(fèi)市場(chǎng)的日益增長(zhǎng)的智能化需求。
查看詳情 查看詳情
14
2022-01

微波雷達(dá)傳感器雷達(dá)感應(yīng)浴室鏡上的應(yīng)用

發(fā)布時(shí)間: : 2022-01--14
微波雷達(dá)傳感器雷達(dá)感應(yīng)浴室鏡上的應(yīng)用,如今,家用電器的智能化已成為一種常態(tài),越來越多的人開始在自己的浴室里安裝智能浴室鏡。但是還有很多人對(duì)智能浴鏡的理解還不夠深入,今天就來說說這個(gè)話題。 什么是智能浴室鏡?智慧型浴室鏡,顧名思義,就是衛(wèi)浴鏡子智能化升級(jí),入門級(jí)產(chǎn)品基本具備了彩燈和鏡面觸摸功能,更高檔次的產(chǎn)品安裝有微波雷達(dá)傳感器智能感應(yīng),當(dāng)感應(yīng)到有人接近到一定距離即可開啟亮燈或者亮屏操作,也可三色無極調(diào),智能除霧,語音交互,日程安排備忘,甚至在鏡子上看電視,聽音樂,氣象預(yù)報(bào),問題查詢,智能控制,健康管理等。 智能化雷達(dá)感應(yīng)浴室鏡與普通鏡的區(qū)別,為什么要選TA?,就功能而言,普通浴鏡價(jià)格用它沒有什么壓力!而且雷達(dá)感應(yīng)智能浴鏡會(huì)讓人猶豫不決是否“值得一看”。就功能和應(yīng)用而言,普通浴鏡功能單一,而微波雷達(dá)傳感器智能浴室鏡功能創(chuàng)新:鏡子燈光色溫和亮度可以自由調(diào)節(jié),鏡面還可以濕手觸控,智能除霧,既環(huán)保又健康! 盡管智能浴鏡比較新穎,但功能豐富,體驗(yàn)感更好,特別是入門級(jí)的智能浴鏡,具有基礎(chǔ)智能化功能,真的適合想體驗(yàn)下智能化的小伙伴們。 給衛(wèi)生間安裝微波雷達(dá)傳感器浴室鏡安裝注意什么? ①確定智能浴室鏡的安裝位置,因?yàn)槭前惭b時(shí)在墻壁上打孔,一旦安裝后一般無法移動(dòng)位置。 ②在選購雷達(dá)感應(yīng)智能浴室鏡時(shí),根據(jù)安裝位置確定鏡子的形狀和尺寸。 ③確定智能浴鏡的安裝位置后,在布線時(shí)為鏡子預(yù)留好電源線。 ④確定微波雷達(dá)傳感器智能浴鏡的安裝高度,一般智能浴鏡的標(biāo)準(zhǔn)安裝高度約85cm(從地磚到鏡子底),具體安裝高度要根據(jù)家庭成員的身高及使用習(xí)慣來決定。 ⑤鏡面遇到污漬,可用酒精或30%清潔稀釋液擦洗,平時(shí)可用干毛巾養(yǎng)護(hù),注意多通風(fēng)。
查看詳情 查看詳情
上一頁
1
2
...
323

地址:深圳市寶安區(qū)西鄉(xiāng)街道麻布社區(qū)寶安互聯(lián)網(wǎng)產(chǎn)業(yè)基地A區(qū)6棟7棟7706

郵箱:Sales@ferry-semi.com

版權(quán)所有?2020  深圳市飛??萍加邢薰?nbsp; 粵ICP備2020098907號(hào)    飛??萍?/span>微波雷達(dá)wifi模塊網(wǎng)站地圖

 

免責(zé)聲明:本網(wǎng)站部分圖片和文字內(nèi)容以及視頻可能來源于網(wǎng)絡(luò),轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如涉及作品內(nèi)容、版權(quán)和其它問題,請(qǐng)?jiān)?0日內(nèi)與本網(wǎng)站聯(lián)系,我們將在第一時(shí)間刪除內(nèi)容!本站擁有對(duì)此聲明的最終解釋權(quán)。