亚洲 第一区 欧美日韩_在线观看免费黄色网站号_在线日韩人妻观看_A在线免费观看黄片

這是描述信息
兆易創(chuàng)新GD32-GigaDevice-兆易創(chuàng)新代理

兆易創(chuàng)新GD32F103RCT6-GD32 ARM Cortex-M3 Microcontroller

兆易創(chuàng)新GD32F103RCT6-GD32 ARM Cortex-M3 Microcontroller GigaDevice Semiconductor Inc. GD32F103xx ARM? Cortex?-M3 32-bit MCU Datasheet General description The GD32F103xx device is a 32-bit general-purpose microcontroller based on the ARM? Cortex?-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex?-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The GD32F103xx device incorporates the ARM? Cortex?-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 3 MB on-chip Flash memory and up to 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit ADCs, up to two 12-bit DACs, up to ten general 16-bit timers, two basic timers plus two PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, an USBD, a CAN and a SDIO. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32F103xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, video intercom, PC peripherals and so on. Device information Table 2-1. GD32F103xx devices features and peripheral list ? Part Number GD32F103xx ? T4 T6 T8 TB C4 C6 C8 CB R4 R6 R8 RB V8 VB Flash (KB) 16 32 64 128 16 32 64 128 16 32 64 128 64 128 SRAM (KB) 6 10 20 20 6 10 20 20 6 10 20 20 20 20 Timers General timer(16- bit) ? 2 (1-2) ? 2 (1-2) ? 3 (1-3) ? 3 (1-3) ? 2 (1-2) ? 2 (1-2) ? 3 (1-3) ? 3 (1-3) ? 2 (1-2) ? 2 (1-2) ? 3 (1-3) ? 3 (1-3) ? 3 (1-3) ? 3 (1-3) ? Advanced timer(16- bit) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? 1 (0) ? SysTick 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? Watchdog 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? RTC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Connectivity ? USART 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 3 (0-2) 3 (0-2) 2 (0-1) 2 (0-1) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) ? ? I2C 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0-1) 2 (0-1) 1 (0) 1 (0) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) ? ? SPI 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0-1) 2 (0-1)
兆易創(chuàng)新GD32-GigaDevice-兆易創(chuàng)新代理
產(chǎn)品描述

兆易創(chuàng)新GD32F103RCT6-GD32 ARM Cortex-M3 Microcontroller

GigaDevice Semiconductor Inc.
GD32F103xx
ARM® Cortex™-M3 32-bit MCU
Datasheet

General description

The GD32F103xx device is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex™-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.
The GD32F103xx device incorporates the ARM® Cortex™-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 3 MB on-chip Flash memory and up to 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit ADCs, up to two 12-bit DACs, up to ten general 16-bit timers, two basic timers plus two PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, an USBD, a CAN and a SDIO.
The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make the GD32F103xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, video intercom, PC peripherals and so on.

Device information

Table 2-1. GD32F103xx devices features and peripheral list

 

Part Number

GD32F103xx

 

T4

T6

T8

TB

C4

C6

C8

CB

R4

R6

R8

RB

V8

VB

Flash (KB)

16

32

64

128

16

32

64

128

16

32

64

128

64

128

SRAM (KB)

6

10

20

20

6

10

20

20

6

10

20

20

20

20

Timers

General timer(16-

bit)

 

2

(1-2)

 

2

(1-2)

 

3

(1-3)

 

3

(1-3)

 

2

(1-2)

 

2

(1-2)

 

3

(1-3)

 

3

(1-3)

 

2

(1-2)

 

2

(1-2)

 

3

(1-3)

 

3

(1-3)

 

3

(1-3)

 

3

(1-3)

 

Advanced timer(16-

bit)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

Watchdog

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

3

(0-2)

3

(0-2)

2

(0-1)

2

(0-1)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

I2C

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

 

 

SPI

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

 

CAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

USBD

1

1

1

1

1

1

1

1

1

1

1

1

1

1

GPIO

26

26

26

26

37

37

37

37

51

51

51

51

80

80

EXMC

0

0

0

0

0

0

0

0

0

0

0

0

1

1

EXTI

16

16

16

16

16

16

16

16

16

16

16

16

16

16

ADC

Units

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

Channels

10

10

10

10

10

10

10

10

16

16

16

16

16

16

Package

QFN36

LQFP48

LQFP64

LQFP100

 

 

Part Number

GD32F103xx

 

RC

RD

RE

RF

RG

RI

RK

VC

VD

VE

VF

VG

VI

VK

Flash (KB)

256

384

512

768

1024

2048

3072

256

384

512

768

1024

2048

3072

SRAM (KB)

48

64

64

96

96

96

96

48

64

64

96

96

96

96

Timers

General timer(16-

bit)

 

4

(1-4)

 

4

(1-4)

 

4

(1-4)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

4

(1-4)

 

4

(1-4)

 

4

(1-4)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

Advanced

timer(16- bit)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

Basic timer(16-

bit)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

Watchdog

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Connectivity

USART

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

UART

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

I2C

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

 

SPI

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

CAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

USBD

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

 

I2S

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

 

SDIO

1

1

1

1

1

1

1

1

1

1

1

1

1

1

GPIO

51

51

51

51

51

51

51

80

80

80

80

80

80

80

EXMC

0

0

0

0

0

0

0

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

16

16

16

16

16

ADC

Units

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

Channels

16

16

16

16

16

16

16

16

16

16

16

16

16

16

DAC

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Package

LQFP64

LQFP100

 

 

Part Number

GD32F103xx

 

ZC

ZD

ZE

ZF

ZG

ZI

ZK

Flash (KB)

256

384

512

768

1024

2048

3072

SRAM (KB)

48

64

64

96

96

96

96

Timers

General

timer(16-bit)

4

(1-4)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced

timer(16-bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

 

Basic timer(16-

bit)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

 

Watchdog

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

Connectivity

USART

3

3

3

3

3

3

3

 

UART

2

2

2

2

2

2

2

 

I2C

2

2

2

2

2

2

2

 

 

SPI

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

CAN

1

1

1

1

1

1

1

 

USBD

1

1

1

1

1

1

1

 

 

I2S

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

 

SDIO

1

1

1

1

1

1

1

GPIO

112

112

112

112

112

112

112

EXMC

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

 

ADC

Units

3

3

3

3

3

3

3

 

Channels

21

21

21

21

21

21

21

DAC

2

2

2

2

2

2

2

Package

LQFP144

 

Memory map

Table 2-4. GD32F103xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

External

device

 

 

 

 

AHB

 

0xA000 0000 - 0xA000 0FFF

 

EXMC - SWREG

 

 

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC -

NOR/PSRAM/SRA M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB

0x5000 0000 - 0x5003 FFFF

Reserved

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

Reserved

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

 

0x4002 3800 - 0x4002 3BFF

Reserved

 

 

0x4002 3400 - 0x4002 37FF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2C00 - 0x4002 2FFF

Reserved

 

 

0x4002 2800 - 0x4002 2BFF

Reserved

 

 

0x4002 2400 - 0x4002 27FF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1C00 - 0x4002 1FFF

Reserved

 

 

0x4002 1800 - 0x4002 1BFF

Reserved

 

 

0x4002 1400 - 0x4002 17FF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0C00 - 0x4002 0FFF

Reserved

 

 

0x4002 0800 - 0x4002 0BFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA1

 

 

0x4002 0000 - 0x4002 03FF

DMA0

 

 

0x4001 8400 - 0x4001 FFFF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 8000 - 0x4001 83FF

SDIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

Reserved

 

 

0x4001 7800 - 0x4001 7BFF

Reserved

 

 

0x4001 7400 - 0x4001 77FF

Reserved

 

 

0x4001 7000 - 0x4001 73FF

Reserved

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

Reserved

 

 

0x4001 5C00 - 0x4001 67FF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

TIMER10

 

 

0x4001 5000 - 0x4001 53FF

TIMER9

 

 

0x4001 4C00 - 0x4001 4FFF

TIMER8

 

 

0x4001 4800 - 0x4001 4BFF

Reserved

 

 

0x4001 4400 - 0x4001 47FF

Reserved

 

 

0x4001 4000 - 0x4001 43FF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

ADC2

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

Reserved

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

Reserved

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

 

0x4000 6000 - 0x4000 63FF

Shared USBD/CAN

SRAM 512 bytes

 

 

0x4000 5C00 - 0x4000 5FFF

USBD

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

 

SRAM

 

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

 

 

0x2006 0000 - 0x2006 FFFF

Reserved

 

 

0x2003 0000 - 0x2005 FFFF

Reserved

 

 

0x2002 0000 - 0x2002 FFFF

Reserved

 

 

0x2001 C000 - 0x2001 FFFF

Reserved

 

 

0x2001 8000 - 0x2001 BFFF

Reserved

 

 

0x2000 0000 - 0x2001 7FFF

SRAM

 

 

Code

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF B000 - 0x1FFF F7FF

Boot loader

 

 

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

 

 

0x1FFF 0000 - 0x1FFF 77FF

Reserved

 

 

0x1FFE C010 - 0x1FFE FFFF

Reserved

 

 

0x1FFE C000 - 0x1FFE C00F

Reserved

 

 

0x1001 0000 - 0x1FFE BFFF

Reserved

 

 

0x1000 0000 - 0x1000 FFFF

Reserved

 

 

0x083C 0000 - 0x0FFF FFFF

Reserved

 

 

0x0830 0000 - 0x083B FFFF

Reserved

 

 

0x0800 0000 - 0x082F FFFF

Main Flash

 

 

0x0030 0000 - 0x07FF FFFF

Reserved

 

 

 

0x0000 0000 - 0x002F FFFF

Aliased to Main

Flash or Boot loader

 

GD32F103Zx LQFP144 pin definitions

Table 2-5. GD32F103Zx LQFP144 pin definitions

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4

Alternate:TRACED1, EXMC_A20

 

PE5

 

4

 

I/O

 

5VT

Default: PE5 Alternate:TRACED2, EXMC_A21

Remap: TIMER8_CH0(3)

 

PE6

 

5

 

I/O

 

5VT

Default: PE6

Alternate:TRACED3, EXMC_A22 Remap: TIMER8_CH1(3)

VBAT

6

P

 

Default: VBAT

PC13- TAMPER-

RTC

 

7

 

I/O

 

 

Default: PC13

Alternate: TAMPER-RTC

PC14- OSC32IN

 

8

 

I/O

 

Default: PC14 Alternate: OSC32IN

PC15- OSC32OUT

 

9

 

I/O

 

Default: PC15 Alternate: OSC32OUT

 

PF0

 

10

 

I/O

 

5VT

Default: PF0 Alternate: EXMC_A0

 

PF1

 

11

 

I/O

 

5VT

Default: PF1

Alternate: EXMC_A1

 

PF2

 

12

 

I/O

 

5VT

Default: PF2 Alternate: EXMC_A2

 

PF3

 

13

 

I/O

 

5VT

Default: PF3

Alternate: EXMC_A3

 

PF4

 

14

 

I/O

 

5VT

Default: PF4 Alternate: EXMC_A4

 

PF5

 

15

 

I/O

 

5VT

Default: PF5

Alternate: EXMC_A5

VSS_5

16

P

 

Default: VSS_5

VDD_5

17

P

 

Default: VDD_5

PF6

18

I/O

 

Default: PF6

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: ADC2_IN4, EXMC_NIORD

Remap: TIMER9_CH0(3)

 

PF7

 

19

 

I/O

 

Default: PF7

Alternate: ADC2_IN5, EXMC_NREG Remap: TIMER10_CH0(3)

 

PF8

 

20

 

I/O

 

Default: PF8

Alternate: ADC2_IN6, EXMC_NIOWR Remap: TIMER12_CH0(3)

 

PF9

 

21

 

I/O

 

Default: PF9

Alternate: ADC2_IN7, EXMC_CD Remap: TIMER13_CH0(3)

 

PF10

 

22

 

I/O

 

Default: PF10

Alternate: ADC2_IN8, EXMC_INTR

 

OSCIN

 

23

 

I

 

Default: OSCIN

Remap: PD0

 

OSCOUT

 

24

 

O

 

Default: OSCOUT

Remap: PD1

NRST

25

I/O

 

Default: NRST

 

PC0

 

26

 

I/O

 

Default: PC0

Alternate: ADC012_IN10

 

PC1

 

27

 

I/O

 

Default: PC1

Alternate: ADC012_IN11

 

PC2

 

28

 

I/O

 

Default: PC2

Alternate: ADC012_IN12

 

PC3

 

29

 

I/O

 

Default: PC3

Alternate: ADC012_IN13

VSSA

30

P

 

Default: VSSA

VREF-

31

P

 

Default: VREF-

VREF+

32

P

 

Default: VREF+

VDDA

33

P

 

Default: VDDA

 

PA0-WKUP

 

34

 

I/O

 

Default: PA0

Alternate: WKUP, USART1_CTS, ADC012_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI

 

PA1

 

35

 

I/O

 

Default: PA1

Alternate: USART1_RTS, ADC012_IN1, TIMER1_CH1, TIMER4_CH1

 

PA2

 

36

 

I/O

 

Default: PA2

Alternate: USART1_TX, ADC012_IN2, TIMER1_CH2, TIMER4_CH2, TIMER8_CH0(3)

 

PA3

 

37

 

I/O

 

Default: PA3

Alternate: USART1_RX, ADC012_IN3, TIMER1_CH3, TIMER4_CH3, TIMER8_CH1(3)

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

VSS_4

38

P

 

Default: VSS_4

VDD_4

39

P

 

Default: VDD_4

 

 

PA4

 

 

40

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0

Remap:SPI2_NSS, I2S2_WS

 

PA5

 

41

 

I/O

 

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

PA6

 

 

42

 

 

I/O

 

Default: PA6

Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, TIMER7_BRKIN, TIMER12_CH0(3)

Remap: TIMER0_BRKIN

 

 

PA7

 

 

43

 

 

I/O

 

Default: PA7

Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, TIMER7_CH0_ON, TIMER13_CH0(3)

Remap: TIMER0_CH0_ON

 

PC4

 

44

 

I/O

 

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

45

 

I/O

 

Default: PC5

Alternate: ADC01_IN15

 

PB0

 

46

 

I/O

 

Default: PB0

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

Remap: TIMER0_CH1_ON

 

PB1

 

47

 

I/O

 

Default: PB1

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

Remap: TIMER0_CH2_ON

PB2

48

I/O

5VT

Default: PB2, BOOT1

 

PF11

 

49

 

I/O

 

5VT

Default: PF11

Alternate: EXMC_NIOS16

 

PF12

 

50

 

I/O

 

5VT

Default: PF12 Alternate: EXMC_A6

VSS_6

51

P

 

Default: VSS_6

VDD_6

52

P

 

Default: VDD_6

 

PF13

 

53

 

I/O

 

5VT

Default: PF13 Alternate: EXMC_A7

 

PF14

 

54

 

I/O

 

5VT

Default: PF14

Alternate: EXMC_A8

 

PF15

 

55

 

I/O

 

5VT

Default: PF15 Alternate: EXMC_A9

 

PG0

 

56

 

I/O

 

5VT

Default: PG0

Alternate: EXMC_A10

PG1

57

I/O

5VT

Default: PG1

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: EXMC_A11

 

PE7

 

58

 

I/O

 

5VT

Default: PE7

Alternate: EXMC_D4 Remap: TIMER0_ETI

 

PE8

 

59

 

I/O

 

5VT

Default: PE8 Alternate: EXMC_D5

Remap: TIMER0_CH0_ON

 

PE9

 

60

 

I/O

 

5VT

Default: PE9 Alternate: EXMC_D6

Remap: TIMER0_CH0

VSS_7

61

P

 

Default: VSS_7

VDD_7

62

P

 

Default: VDD_7

 

PE10

 

63

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

64

 

I/O

 

5VT

Default: PE11

Alternate: EXMC_D8 Remap: TIMER0_CH1

 

PE12

 

65

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON

 

PE13

 

66

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2

 

PE14

 

67

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3

 

PE15

 

68

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BRKIN

 

PB10

 

69

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2

 

PB11

 

70

 

I/O

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3

VSS_1

71

P

 

Default: VSS_1

VDD_1

72

P

 

Default: VDD_1

 

PB12

 

73

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS

PB13

74

I/O

5VT

Default: PB13

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON,

I2S1_CK

 

PB14

 

75

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0(3)

 

PB15

 

76

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1(3)

 

PD8

 

77

 

I/O

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX

 

PD9

 

78

 

I/O

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX

 

PD10

 

79

 

I/O

 

5VT

Default: PD10 Alternate: EXMC_D15

Remap: USART2_CK

 

PD11

 

80

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS

 

PD12

 

81

 

I/O

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS

 

PD13

 

82

 

I/O

 

5VT

Default: PD13

Alternate: EXMC_A18 Remap: TIMER3_CH1

VSS_8

83

P

 

Default: VSS_8

VDD_8

84

P

 

Default: VDD_8

 

PD14

 

85

 

I/O

 

5VT

Default: PD14 Alternate: EXMC_D0

Remap: TIMER3_CH2

 

PD15

 

86

 

I/O

 

5VT

Default: PD15 Alternate: EXMC_D1

Remap: TIMER3_CH3

 

PG2

 

87

 

I/O

 

5VT

Default: PG2

Alternate: EXMC_A12

 

PG3

 

88

 

I/O

 

5VT

Default: PG3

Alternate: EXMC_A13

 

PG4

 

89

 

I/O

 

5VT

Default: PG4

Alternate: EXMC_A14

 

PG5

 

90

 

I/O

 

5VT

Default: PG5

Alternate: EXMC_A15

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

PG6

 

91

 

I/O

 

5VT

Default: PG6

Alternate: EXMC_INT1

 

PG7

 

92

 

I/O

 

5VT

Default: PG7

Alternate: EXMC_INT2

PG8

93

I/O

5VT

Default: PG8

VSS_9

94

P

 

Default: VSS_9

VDD_9

95

P

 

Default: VDD_9

 

PC6

 

96

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0, SDIO_D6

Remap: TIMER2_CH0

 

PC7

 

97

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1, SDIO_D7

Remap: TIMER2_CH1

 

PC8

 

98

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2, SDIO_D0 Remap: TIMER2_CH2

 

PC9

 

99

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3, SDIO_D1 Remap: TIMER2_CH3

 

PA8

 

100

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0

 

PA9

 

101

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1

 

PA10

 

102

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2

 

PA11

 

103

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3

 

PA12

 

104

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP

 

PA13

 

105

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

106

 

 

-

VSS_2

107

P

 

Default: VSS_2

VDD_2

108

P

 

Default: VDD_2

 

PA14

 

109

 

I/O

 

5VT

Default: JTCK, SWCLK Remap: PA14

 

PA15

 

110

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

111

 

I/O

 

5VT

Default: PC10

Alternate: UART3_TX, SDIO_D2

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

112

 

I/O

 

5VT

Default: PC11

Alternate: UART3_RX, SDIO_D3 Remap: USART2_RX, SPI2_MISO

 

PC12

 

113

 

I/O

 

5VT

Default: PC12

Alternate: UART4_TX, SDIO_CK

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

114

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: CAN0_RX

 

PD1

 

115

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: CAN0_TX

 

PD2

 

116

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, SDIO_CMD, UART4_RX

 

PD3

 

117

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS

 

PD4

 

118

 

I/O

 

5VT

Default: PD4 Alternate: EXMC_NOE

Remap: USART1_RTS

 

PD5

 

119

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

VSS_10

120

 

 

Default: VSS_10

VDD_10

121

 

 

Default: VDD_10

 

PD6

 

122

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT Remap: USART1_RX

 

PD7

 

123

 

I/O

 

5VT

Default: PD7

Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK

 

PG9

 

124

 

I/O

 

5VT

Default: PG9

Alternate: EXMC_NE1, EXMC_NCE2

 

PG10

 

125

 

I/O

 

5VT

Default: PG10

Alternate: EXMC_NCE3_0, EXMC_NE2

 

PG11

 

126

 

I/O

 

5VT

Default: PG11

Alternate: EXMC_NCE3_1

 

PG12

 

127

 

I/O

 

5VT

Default: PG12

Alternate: EXMC_NE3

 

PG13

 

128

 

I/O

 

5VT

Default: PG13 Alternate: EXMC_A24

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

PG14

129

I/O

5VT

Default: PG14

Alternate: EXMC_A25

VSS_11

130

P

 

Default: VSS_11

VDD_11

131

P

 

Default: VDD_11

PG15

132

I/O

5VT

Default: PG15

 

PB3

 

133

 

I/O

 

5VT

Default: JTDO Alternate:SPI2_SCK, I2S2_CK

Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK

 

PB4

 

134

 

I/O

 

5VT

Default: NJTRST Alternate: SPI2_MISO

Remap: TIMER2_CH0, PB4, SPI0_MISO

 

PB5

 

135

 

I/O

 

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI

 

PB6

 

136

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX

 

PB7

 

137

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV

Remap: USART0_RX

BOOT0

138

I

 

Default: BOOT0

 

PB8

 

139

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, SDIO_D4, TIMER9_CH0(3) Remap: I2C0_SCL, CAN0_RX

 

PB9

 

140

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, SDIO_D5, TIMER10_CH0(3) Remap: I2C0_SDA, CAN0_TX

PE0

141

I/O

5VT

Default: PE0

Alternate: TIMER3_ETI, EXMC_NBL0

PE1

142

I/O

5VT

Default: PE1

Alternate: EXMC_NBL1

VSS_3

143

P

 

Default: VSS_3

VDD_3

144

P

 

Default: VDD_3

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available in GD32F103ZF/G/I/K devices.

ARM® Cortex™-M3 core

The Cortex™-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex™-M3 processor core
Up to 108 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex™-M3:
Internal Bus Matrix connected with I-Code bus, D-Code bus, System bus, Private Peripheral Bus (PPB) and debug accesses.
Nested Vectored Interrupt Controller (NVIC).
Flash Patch and Breakpoint (FPB).
Data Watchpoint and Trace (DWT).
Instrumentation Trace Macrocell (ITM).
Embedded Trace Macrocell (ETM).
Serial Wire JTAG Debug Port (SWJ-DP).
Trace Port Interface Unit (TPIU).
Memory Protection Unit (MPU).


On-chip memory

Up to 3072 Kbytes of Flash memory
Up to 96 Kbytes of SRAM

The ARM® Cortex™-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 3072 Kbytes of inner Flash and 96 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with zero wait states. The Table 2-4. GD32F103xx memory map shows the memory map of the GD32F103xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 16 MHz crystal oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control unit provides a range of frequencies and clock functions. These include an Internal 8M RC oscillator (IRC8M), a High Speed crystal oscillator (HXTAL), a Low Speed Internal 40K RC oscillator (IRC40K), a Low Speed crystal oscillator (LXTAL), a Phase Lock Loop (PLL), a HXTAL clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The frequency of AHB, APB2 and the APB1 domains can be configured by each prescaler. The maximum frequency of the AHB, APB2 and APB1 domains is 108 MHz/108 MHz/54 MHz. See Figure 2-8. GD32F103xx clock tree for details.
GD32F10x Reset Control includes the control of three kinds of reset: power reset, system reset and backup domain reset. The system reset resets the processor core and peripheral IP components except for the SW-DP controller and the Backup domain. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), if devices are GD32F103xF/G/I/K, USART1 (PA2 and PA3) is also available for boot functions. It also can

be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 0 of Flash memory is selected. It also supports to boot from bank 1 of Flash memory by setting a bit in option bytes.

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only clock of Cortex™-M3 is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of IRC8M, HXTAL and PLLs are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, USB Wakeup and Ethernet Wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC
Up to 1 MSPS for 12-bit resolution
Analog input signal voltage range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to three 12-bit multi-channel ADCs are integrated in the device. Each has a total of up to 21 multiplexed external channels. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode.
The ADCs can be triggered from the events generated by the general level 0 timers (TIMERx) or the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor generates a voltage that varies linearly with temperature. The analog supply voltage VDDA can vary from 2.6 V to 3.6 V. The output voltage of temperature sensor is internally connected to the ADC_IN16 input channel.

3.7.Digital to analog converter (DAC)

Two 12-bit DACs with independent output channels
8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DACs are used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S and SDIO

The direct memory access (DMA) controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 112 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 112 general purpose I/O pins (GPIO), named PA0 ~ PA15, PB0 ~ PB15, PC0
~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0 ~ PF15 and PG0 ~ PG15 for the device to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupt on the GPIO pins of the device have related control and configuration registers in the Interrupt/event Controller Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Each GPIO pin can be configured as pull-up, pull-down or no pull-up/pull-down. All GPIOs are high-current capable except for analog mode.

Timers and PWM generation

Up to two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers, and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 6 independent channels can be used for
Input capture
Output compare
PWM generation (edge-aligned or center-aligned counting modes)
Single pulse mode output

If configured as a general 16-bit timer, it can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, known as TIMER1 ~ TIMER4, TIMER8 ~ TIMER10, TIMER11 ~ TIMER13 can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 and TIMER6 are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F103xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer consists of an 8-stage prescaler and a 12-bit down-counter, it is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in

debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 6.75 MHz
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to
translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F103xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Secure digital input and output card interface (SDIO)

Support SD2.0/SDIO2.0/MMC4.2 host interface

The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1.

Universal serial bus full-speed device (USBD)

One full-speed USB Interface with frequency up to 12 Mbit/s
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between one or more devices. Full-speed peripheral is compliant with the USB 2.0 specification. The device controller enables 12 Mbit/s data exchange with a USB Host controller. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

Controller area network (CAN)

One CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for USB CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and CF card
Up to 16-bit data bus
Support interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and CF card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.21.Package and operation temperature

LQFP144 (GD32F103Zx), LQFP100 (GD32F103Vx), LQFP64 (GD32F103Rx), LQFP48 (GD32F103Cx) and QFN36 (GD32F103Tx)
Operation temperature range: -40°C to +85°C (industrial level)

掃二維碼用手機看

飛睿無線定位測距uwb標簽UWB芯片廠商UWB定位公司實現(xiàn)無縫定位的領跑者

在當今數(shù)字化世界中,定位技術的重要性越來越被廣泛認知和應用。從室內導航到物流跟蹤,無線測距UWB芯片的出現(xiàn)為各行各業(yè)帶來了新的可能性。而在這個充滿競爭的領域中,一家名為飛睿UWB定位公司的無線定位測距uwb標簽UWB芯片廠商,憑借其先進的技術和創(chuàng)新能力,成功成為實現(xiàn)無縫定位的先進者。 UWB(Ultra-Wideband)是一種廣泛應用于室內定位和跟蹤的無線通信技術。相比傳統(tǒng)的定位技術,如GPS或Wi-Fi,UWB具有更高的精度和定位準確性。這一技術利用短脈沖信號的傳播時間來計算物體與基站之間的距離,從而實現(xiàn)高精度的定位。 飛睿UWB定位公司作為一家專注于UWB技術研發(fā)和應用的企業(yè),不僅在無線定位測距uwb標簽UWB芯片領域擁有深厚的技術實力,而且在產(chǎn)品研發(fā)和市場推廣方面也積累了豐富的經(jīng)驗。該公司的核心業(yè)務包括UWB芯片的設計、制造、銷售和技術支持,并提供完整的解決方案來滿足不同行業(yè)的需求。 一、UWB芯片的優(yōu)勢和應用 UWB芯片作為實現(xiàn)準確定位和跟蹤的關鍵技術,具有許多優(yōu)勢和廣泛應用的潛力。首先,UWB芯片具有高精度的定位能力,可以達到亞厘米級的精度,尤其適用于對位置精度要求高的應用場景。其次,UWB技術在室內環(huán)境中的表現(xiàn)出色,能夠克服傳統(tǒng)技術在室內多路徑干擾和信號衰減方面的限制。此外,UWB芯片還能夠實現(xiàn)低功耗和高數(shù)據(jù)傳輸速率,適用于物流追蹤、室內導航、智能家居等領域。 二、飛睿UWB定位公司的研發(fā)實力和技術創(chuàng)新 飛睿UWB定位公司以其突出的研發(fā)實力和技術創(chuàng)新能力在行業(yè)內獨樹一幟。該公司擁有一支由工程師和科研人員組成的專業(yè)團隊,致力于UWB芯片的研發(fā)和創(chuàng)新應用。不僅在硬件設計方面有著豐富的經(jīng)驗,還在信號處理算法和定位算法等核心技術上有著深入研究。通過持續(xù)的技術創(chuàng)新和研發(fā)投入,UWB定位公司不斷地提升產(chǎn)品性能,滿足市場需求。 三、UWB定位公司的產(chǎn)品與解決方案 飛睿作為一家專業(yè)的無線定位測距uwb標簽UWB芯片廠商,UWB定位公司提供了多款優(yōu)秀的產(chǎn)品與解決方案。首先,飛睿的UWB芯片具有高性能和可靠性,能夠滿足各行業(yè)對定位精度和穩(wěn)定性的要求。其次,UWB定位公司還提供完善的軟件開發(fā)工具和技術支持,幫助客戶快速集成和開發(fā)應用。此外,UWB定位公司還定制化的解決方案,根據(jù)客戶的具體需求提供全面的技術支持和服務,確保系統(tǒng)的穩(wěn)定運行和良好的用戶體驗。 四、UWB定位公司的應用案例 UWB定位公司的產(chǎn)品和解決方案已經(jīng)成功應用于多個行業(yè),并取得了顯著的成果。以下是一些應用案例的介紹: 1. 物流和倉儲管理:UWB定位技術可以實時追蹤貨物的位置和運動軌跡,提高物流效率和準確性。通過在倉庫內部安裝UWB基站,可以實現(xiàn)對貨物的高精度定位,減少貨物丟失和誤配的情況,提升倉儲管理的效率。 2. 室內導航和定位服務:UWB芯片可以用于室內導航和定位服務,幫助人們快速找到目的地并提供導航指引。在商場、機場、醫(yī)院等場所安裝UWB基站,可以提供準確的導航服務,為用戶提供更好的體驗。 3. 車聯(lián)網(wǎng)和自動駕駛:UWB技術在車聯(lián)網(wǎng)和自動駕駛領域也有廣泛應用。通過在車輛中安裝UWB傳感器和芯片,可以實現(xiàn)車輛之間的精準通信和定位,提升駕駛安全性和車輛自主性。 4. 工業(yè)制造和機器人:在工業(yè)制造和機器人領域,UWB技術可以用于定位和跟蹤移動設備和機器人的位置,提高生產(chǎn)效率和自動化水平。通過與其他傳感器和系統(tǒng)的結合,可以實現(xiàn)更智能化的制造和操作。 五、未來發(fā)展和挑戰(zhàn) 飛睿作為無線定位測距uwb標簽UWB芯片廠商和定位技術提供商,UWB定位公司面臨著許多機遇和挑戰(zhàn)。隨著物聯(lián)網(wǎng)和人工智能的快速發(fā)展,對于精準定位和跟蹤的需求將越來越大。UWB技術在室內定位、智能交通、工業(yè)制造等領域有著廣闊的應用前景。然而,市場競爭激烈,技術要求不斷提高,對于UWB定位公司來說,需要不斷加強技術研發(fā)和創(chuàng)新能力,提供更優(yōu)秀的產(chǎn)品和解決方案,贏得客戶的信任和市場份額。 六、技術合作與生態(tài)建設 飛睿UWB定位公司在推動技術合作與生態(tài)建設方面也取得了顯著成績。他們積極與其他行業(yè)的廠商和合作伙伴進行技術交流和合作,共同推動UWB技術的發(fā)展和應用。通過與硬件設備生產(chǎn)商、軟件開發(fā)公司以及系統(tǒng)集成商等的合作,UWB定位公司不僅拓展了產(chǎn)品的應用領域,還實現(xiàn)了技術的互補和資源的共享,加快了技術創(chuàng)新的速度和效果。 七、用戶體驗與滿意度 作為先進的UWB芯片廠商和定位技術提供商,飛睿UWB定位公司一直將用戶體驗和滿意度放在優(yōu)先位置。他們注重產(chǎn)品的易用性和穩(wěn)定性,在產(chǎn)品設計和功能開發(fā)上持續(xù)優(yōu)化,以提供更好的用戶體驗。同時,UWB定位公司還建立了完善的售后服務體系,及時響應客戶的需求和問題,并提供技術支持和解決方案,確保用戶能夠充分發(fā)揮UWB技術的價值和效果,獲得滿意的使用體驗。 八、安全與隱私保護 在定位技術應用的同時,飛睿UWB定位公司也重視用戶的安全和隱私保護。他們在產(chǎn)品設計和開發(fā)中注入了安全機制,采用加密和身份驗證等技術手段,確保用戶的數(shù)據(jù)和隱私得到有效保護。同時,UWB定位公司嚴格遵守相關法規(guī)和行業(yè)標準,保證數(shù)據(jù)的合法和合規(guī)使用,為用戶提供可信賴的定位解決方案。 九、社會責任與可持續(xù)發(fā)展 作為一家具有社會責任感的企業(yè),飛睿uwb標簽UWB定位公司積極關注可持續(xù)發(fā)展和環(huán)境保護。他們在生產(chǎn)過程中注重資源的合理利用和能源的節(jié)約,致力于減少對環(huán)境的影響。同時,UWB定位公司也積極參與社會公益活動,回饋社會,為推動可持續(xù)發(fā)展和社會進步做出貢獻。 總結: 飛睿UWB定位公司作為一家先進的無線定位測距uwb標簽UWB芯片廠商和解決方案提供商,通過先進的技術研發(fā)和創(chuàng)新能力,成功實現(xiàn)了無縫定位的先進地位。他們的產(chǎn)品和解決方案在物流管理、室內導航、車聯(lián)網(wǎng)、工業(yè)制造等領域展現(xiàn)出了巨大的應用潛力和市場前景。同時,UWB定位公司注重用戶體驗和滿意度,積極推動技術合作與生態(tài)建設,關注安全與隱私保護,承擔社會責任,致力于可持續(xù)發(fā)展。相信在不久的將來,UWB定位公司將以其先進的技術和卓越的服務,繼續(xù)引領無線測距UWB芯片領域的發(fā)展,為行業(yè)和用戶帶來更多的創(chuàng)新和價值。
點擊查看更多
18
2022-02

uA級別智能門鎖低功耗雷達模塊讓門鎖更加智能省電節(jié)約功耗

發(fā)布時間: : 2022-02--18
uA級別智能門鎖低功耗雷達模塊讓門鎖更加智能省電節(jié)約功耗,指紋門鎖并不是什么新鮮事,我相信每個人都很熟悉。隨著近年來智能家居的逐步普及,指紋門鎖也進入了成千上萬的家庭。今天的功耗雷達模塊指紋門鎖不僅消除了繁瑣的鑰匙,而且還提供了各種智能功能,uA級別智能門鎖低功耗雷達模塊用在智能門鎖上,可以實現(xiàn)門鎖的智能感應屏幕,使電池壽命延長3-5倍,如與其他智能家居連接,成為智能場景的開關。所以今天的指紋門鎖更被稱為智能門鎖。 今天,讓我們來談談功耗雷達模塊智能門鎖的安全性。希望能讓更多想知道智能門鎖的朋友認識下。 指紋識別是智能門鎖的核心 指紋識別技術在我們的智能手機上隨處可見。從以前的實體指紋識別到屏幕下的指紋識別,可以說指紋識別技術已經(jīng)相當成熟。指紋識別可以說是整個uA級低功耗雷達模塊智能門鎖的核心。 目前主要有三種常見的指紋識別方法,即光學指紋識別、半導體指紋識別和超聲指紋識別。 光學指紋識別 讓我們先談談光學指紋識別的原理實際上是光的反射。我們都知道指紋本身是不均勻的。當光照射到我們的指紋上時,它會反射,光接收器可以通過接收反射的光來繪制我們的指紋。就像激光雷達測繪一樣。 光學指紋識別通常出現(xiàn)在打卡機上,手機上的屏幕指紋識別技術也使用光學指紋識別。今天的光學指紋識別已經(jīng)達到了非??斓淖R別速度。 然而,光學指紋識別有一個缺點,即硬件上的活體識別無法實現(xiàn),容易被指模破解。通常,活體識別是通過軟件算法進行的。如果算法處理不當,很容易翻車。 此外,光學指紋識別也容易受到液體的影響,濕手解鎖的成功率也會下降。 超聲指紋識別 超聲指紋識別也被稱為射頻指紋識別,其原理與光學類型相似,但超聲波使用聲波反射,實際上是聲納的縮小版本。因為使用聲波,不要擔心水折射會降低識別率,所以超聲指紋識別可以濕手解鎖。然而,超聲指紋識別在防破解方面與光學類型一樣,不能實現(xiàn)硬件,可以被指模破解,活體識別仍然依賴于算法。 半導體指紋識別 半導體指紋識別主要采用電容、電場(即我們所說的電感)、溫度和壓力原理來實現(xiàn)指紋圖像的收集。當用戶將手指放在前面時,皮膚形成電容陣列的極板,電容陣列的背面是絕緣極板。由于不同區(qū)域指紋的脊柱與谷物之間的距離也不同,因此每個單元的電容量隨之變化,從而獲得指紋圖像。半導體指紋識別具有價格低、體積小、識別率高的優(yōu)點,因此大多數(shù)uA級低功耗雷達模塊智能門鎖都采用了這種方案。半導體指紋識別的另一個功能是活體識別。傳統(tǒng)的硅膠指模無法破解。 當然,這并不意味著半導體可以百分識別活體。所謂的半導體指紋識別活體檢測不使用指紋活體體征。本質上,它取決于皮膚的材料特性,這意味著雖然傳統(tǒng)的硅膠指模無法破解。 一般來說,無論哪種指紋識別,都有可能被破解,只是說破解的水平。然而,今天的指紋識別,無論是硬件生活識別還是算法生活識別,都相對成熟,很難破解。畢竟,都可以通過支付級別的認證,大大保證安全。 目前,市場上大多數(shù)智能門鎖仍將保留鑰匙孔。除了指紋解鎖外,用戶還可以用傳統(tǒng)鑰匙開門。留下鑰匙孔的主要目的是在指紋識別故障或智能門鎖耗盡時仍有開門的方法。但由于有鑰匙孔,它表明它可以通過技術手段解鎖。 目前市場上的鎖等級可分為A、B、C三個等級,這三個等級主要是通過防暴開鎖和防技術開鎖的程度來區(qū)分的。A級鎖要求技術解鎖時間不少于1分鐘,B級鎖要求不少于5分鐘。即使是高級別的C級鎖也只要求技術解鎖時間不少于10分鐘。 也就是說,現(xiàn)在市場上大多數(shù)門鎖,無論是什么級別,在專業(yè)的解鎖大師面前都糊,只不過是時間長短。 安全是重要的,是否安全增加了人們對uA級別低功耗雷達模塊智能門鎖安全的擔憂。事實上,現(xiàn)在到處都是攝像頭,強大的人臉識別,以及移動支付的出現(xiàn),使家庭現(xiàn)金減少,所有這些都使得入室盜竊的成本急劇上升,近年來各省市的入室盜竊幾乎呈懸崖狀下降。 換句話說,無論鎖有多安全,無論鎖有多難打開,都可能比在門口安裝攝像頭更具威懾力。 因此,擔心uA級別低功耗雷達模塊智能門鎖是否不安全可能意義不大。畢竟,家里的防盜鎖可能不安全。我們應該更加關注門鎖能給我們帶來多少便利。 我們要考慮的是智能門鎖的兼容性和通用性。畢竟,智能門鎖近年來才流行起來。大多數(shù)人在后期將普通機械門鎖升級為智能門鎖。因此,智能門鎖能否與原門兼容是非常重要的。如果不兼容,發(fā)現(xiàn)無法安裝是一件非常麻煩的事情。 uA級別低功耗雷達模塊智能門鎖主要是為了避免帶鑰匙的麻煩。因此,智能門鎖的便利性尤為重要。便利性主要體現(xiàn)在指紋的識別率上。手指受傷導致指紋磨損或老年人指紋較淺。智能門鎖能否識別是非常重要的。 當然,如果指紋真的失效,是否有其他解鎖方案,如密碼解鎖或NFC解鎖。還需要注意密碼解鎖是否有虛假密碼等防窺鏡措施。 當然,智能門鎖的耐久性也是一個需要特別注意的地方。uA級別低功耗雷達模塊智能門鎖主要依靠內部電池供電,這就要求智能門鎖的耐久性盡可能好,否則經(jīng)常充電或更換電池會非常麻煩。 智能門鎖低功耗雷達模塊:讓門鎖更加智能省電節(jié)約功耗 在當今信息化時代,智能門鎖已經(jīng)成為人們生活中不可或缺的一部分。對于門鎖制造商來說,如何提高門鎖的安全性、實用性和便利性,成為他們面對的重要課題。隨著人們對門鎖智能化的需求越來越高,門鎖的能耗問題也成為了門鎖制造商需要重視的問題。為此,越來越多的門鎖制造商開始推出以低功耗為主題的系列產(chǎn)品。在這樣的背景下,智能門鎖低功耗雷達模塊應運而生。 智能門鎖低功耗雷達模塊是一種新型技術,其采取雷達技術對門鎖周圍的物體進行探測,一旦發(fā)現(xiàn)門鎖附近有人靠近,便會將門鎖自動解鎖,無需使用鑰匙。同時,在保持智能控制的前提下,實現(xiàn)了門鎖省電、節(jié)約功耗,延長門鎖使用壽命。 在使用智能門鎖低功耗雷達模塊的門鎖中,控制電路和自動解鎖機制是關鍵的部件??刂齐娐凡捎孟冗M的芯片技術,通過優(yōu)秀的功耗控制以實現(xiàn)模塊化管理。而自動解鎖機制不僅可以通過微波信號控制實現(xiàn)門鎖的無鑰匙解鎖,還能夠在門鎖未處理的情況下自動鎖定,保障門鎖的安全。 智能門鎖低功耗雷達模塊的主要特點是:低功耗、高靈敏度和高可靠性。該模塊在進行人體檢測時,可以遠距離探測到距離為5-7米遠處的人體信號,目標檢測速度極快,而且對門鎖周圍的環(huán)境要求不高。同時,該模塊采用了自適應自動補償技術,能夠根據(jù)不同環(huán)境的變化自動調整信號發(fā)射和接收參數(shù),減小誤檢率。 在使用智能門鎖低功耗雷達模塊的門鎖中,其功耗可以做到非常低,一組電池能夠支持門鎖持續(xù)使用幾年左右。而且這樣的智能門鎖除了具有自動解鎖的功能,還可與APP相互匹配,實現(xiàn)了遠程操作的便捷性。 總的來說,智能門鎖低功耗雷達模塊的問世,解決了門鎖安全性和省電節(jié)省方面的問題,是智能門鎖材料不可或缺的一部分。作為門鎖制造商,只有不斷創(chuàng)新,利用這種新型技術,將會在行業(yè)中占據(jù)重要的地位。 除了上文所述的主要特點和優(yōu)勢,智能門鎖低功耗雷達模塊還具有以下幾點: 1. 實時監(jiān)測門鎖周圍環(huán)境變化,通過物體的距離體積和運動來確定是否有人靠近門鎖,并控制門鎖的開啟或關閉,使得門鎖更加智能化。 2. 可對門鎖附件進行檢測,如門掛、門應急照明燈以及緊急呼叫按鈕等,并及時給出響應,確保門鎖能夠正常運作。這樣,門鎖在不受干擾的情況下,能夠 保持安全通道。 3. 通過智能學習技術,能夠自適應網(wǎng)站多種環(huán)境的變化,讓智能門鎖低功耗雷達模塊更加準確和精細的控制門鎖的開關,節(jié)約能耗并延長使用壽命。 4. 能夠與其他智能電器相連,如智能家居系統(tǒng)、電視等,形成智能家居生態(tài)圈,更好地控制家庭訪客進出,讓生活更加方便。 綜上所述,智能門鎖低功耗雷達模塊的出現(xiàn),對提升門鎖能耗管理和智能化有著重要作用。門鎖制造商只有將這些新型技術運用到門鎖產(chǎn)品中,才能更加貼合用戶需求,滿足消費市場的日益增長的智能化需求。
查看詳情 查看詳情
14
2022-01

微波雷達傳感器雷達感應浴室鏡上的應用

發(fā)布時間: : 2022-01--14
微波雷達傳感器雷達感應浴室鏡上的應用,如今,家用電器的智能化已成為一種常態(tài),越來越多的人開始在自己的浴室里安裝智能浴室鏡。但是還有很多人對智能浴鏡的理解還不夠深入,今天就來說說這個話題。 什么是智能浴室鏡?智慧型浴室鏡,顧名思義,就是衛(wèi)浴鏡子智能化升級,入門級產(chǎn)品基本具備了彩燈和鏡面觸摸功能,更高檔次的產(chǎn)品安裝有微波雷達傳感器智能感應,當感應到有人接近到一定距離即可開啟亮燈或者亮屏操作,也可三色無極調,智能除霧,語音交互,日程安排備忘,甚至在鏡子上看電視,聽音樂,氣象預報,問題查詢,智能控制,健康管理等。 智能化雷達感應浴室鏡與普通鏡的區(qū)別,為什么要選TA?,就功能而言,普通浴鏡價格用它沒有什么壓力!而且雷達感應智能浴鏡會讓人猶豫不決是否“值得一看”。就功能和應用而言,普通浴鏡功能單一,而微波雷達傳感器智能浴室鏡功能創(chuàng)新:鏡子燈光色溫和亮度可以自由調節(jié),鏡面還可以濕手觸控,智能除霧,既環(huán)保又健康! 盡管智能浴鏡比較新穎,但功能豐富,體驗感更好,特別是入門級的智能浴鏡,具有基礎智能化功能,真的適合想體驗下智能化的小伙伴們。 給衛(wèi)生間安裝微波雷達傳感器浴室鏡安裝注意什么? ①確定智能浴室鏡的安裝位置,因為是安裝時在墻壁上打孔,一旦安裝后一般無法移動位置。 ②在選購雷達感應智能浴室鏡時,根據(jù)安裝位置確定鏡子的形狀和尺寸。 ③確定智能浴鏡的安裝位置后,在布線時為鏡子預留好電源線。 ④確定微波雷達傳感器智能浴鏡的安裝高度,一般智能浴鏡的標準安裝高度約85cm(從地磚到鏡子底),具體安裝高度要根據(jù)家庭成員的身高及使用習慣來決定。 ⑤鏡面遇到污漬,可用酒精或30%清潔稀釋液擦洗,平時可用干毛巾養(yǎng)護,注意多通風。
查看詳情 查看詳情
上一頁
1
2
...
323

地址:深圳市寶安區(qū)西鄉(xiāng)街道麻布社區(qū)寶安互聯(lián)網(wǎng)產(chǎn)業(yè)基地A區(qū)6棟7棟7706

郵箱:Sales@ferry-semi.com

版權所有?2020  深圳市飛??萍加邢薰?nbsp; 粵ICP備2020098907號    飛睿科技微波雷達wifi模塊網(wǎng)站地圖

 

免責聲明:本網(wǎng)站部分圖片和文字內容以及視頻可能來源于網(wǎng)絡,轉載目的在于傳遞更多信息,并不代表本網(wǎng)站贊同其觀點或證實其內容的真實性。如涉及作品內容、版權和其它問題,請在30日內與本網(wǎng)站聯(lián)系,我們將在第一時間刪除內容!本站擁有對此聲明的最終解釋權。